Calculus	Accumulating Area			Name:						


(1)	Let .
	(a)	Sketch a graph of ƒ(t) = 4.








(b)  	Use geometry to fill in the chart below and generalize it for an arbitrary value of x.
		x	0	1	2	3	…	x

	        A(x)					…

	(c)	Sketch the graph of A.  What is the slope?  The y-intercept?









[bookmark: _GoBack](d)	How would we change the definition of A(x) that is given above to create a new function B(x) with slope 5?







(e)	If we define  , how does the graph of C relate to the graph of A from part (c) above?







(2)	Let  .
	(a)	Sketch a graph of ƒ(t) = 2t.








(b)  	Use geometry to fill in the chart below and generalize it for an arbitrary value of x.
	
	x	0	1	2	3	4	…	x
          F(x)						…

	

(c)	Sketch the graph of F for x ≥ 0.  Then use the graph of ƒ(t) = 2t to explain why the graph of F does not have a constant slope (as on the first page).










	(d)	Estimate the slopes of F at x = 1, 2, 3, and 4.  (Zoom in or do something on your calculator!)  What is the relationship between F and the function ƒ(t) = 2t?









	
(3)	Let .
	[image: ]





	(a)	Fill out the chart below, using geometry to make some good approximations.

		x	0	     1		2	     3		4

		G(x)



(b)	On the graph above, make a rough sketch of the graph of G by using the graph of  
y = ƒ(t). 




	(c)	Consider the function .  How does this function h relate to your graph of G?







(d)	Let .  How does G relate to K? Explain.








(4)	(a)	For any continuous function y = ƒ(t), make a conjecture which relates A and ƒ, where .  







	(b)	Expand your conjecture to explain the effect of the choice of a on the function A.









(5)	Use your conjecture to:

(a)	find A(x) if 








(b)	find B(x) if .









(6)	(a)	Find 







	(b)	Find  A(5) =.






	(c)	Find A(2) = .







	(d)	Find  and explain this geometrically in terms of the integrals in parts (b) and (c).










(7)	Generalize:  if F is an antiderivative of ƒ, find .









	
(8)	If , interpret each of the following expressions as areas geometrically in terms of the picture to the right.
(a)   A(x + h)





(b)   A(x)




	
		[image: ]






(c)   A(x + h) – A(x)








(d)   








(e)	What happens to the expression in part (d) as ?
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