

Statewide Dual Credit Learning Objectives Precalculus (MATH 1730)

Topics Covered

- 1. Equations
- 2. Inequalities
- 3. Properties of Functions
- 4. Models
- 5. Functions
- 6. Trigonometric Functions
- 7. Triangles
- 8. Circles

Learning Objectives

1. Equations

- a. Apply various techniques, as appropriate, to simplify expressions and solve equations. This includes using exact symbolic (algebraic), approximation and graphical techniques.
- b. Solve quadratic equations for both real and complex roots.
- c. Solve polynomial equations of degree > 2 for both real and complex roots.
- d. Use synthetic division and other relevant results to identify and simplify the equation.
- e. Solve equations involving absolute values, radical, rational, exponential or logarithmic expressions.
- f. Identify equations that can't be solved directly and use graphical or other approximations.
- g. Use the properties of logs and exponentials to simplify expressions involving logs and exponentials.

2. Inequalities

a. Apply various techniques (algebraic and graphical) to solve inequalities involving polynomials (including degree >2), and absolute values, and can express answers using interval notation

3. Properties of Functions

- a. Express properties and transformations of functions graphically, and can use a graph to determine function properties
- b. On both the graph and the function can apply and identify the basic transformations: f(x-a), f(x+a), f(x)+a, f(x)-a, f(ax), af(x)
- c. From the function can identify graphical functional properties and vice versa: intercepts, asymptotes (vertical, horizontal, slant), domain, range, and end behavior.

d. From the graph can locate critical points and identify if each is a minimum, maximum or point of inflection, and locate intervals of increasing/ decreasing

4. Models

- a. Use functions to model behavior described by words and/or data
- b. Identify and make appropriate models for situations involving for example, direct and inverse proportionality, average rate of change, exponential growth and decay, logarithmic relations, and periodic behavior.
- c. Use appropriate units and function properties, like domain, as needed in function models. c) Interpret the solutions in terms of the original problem.

5. Functions

- a. Manipulate functions and identify their properties.
- b. Identify basic properties of functions (definition of function, domain, range, odd, even, asymptotic behavior)
- c. Manipulate functions as elements to get new functions via addition, subtraction, multiplication, division, and composition and can simplify the resulting expression (e.g. difference quotient)
- d. Construct and evaluate inverse functions and use domain and/or range restriction appropriately.

6. Trigonometric Functions

- a. Use trigonometric functions and identities to find specific results.
- b. Relate values on the unit circle to trig function values, and vice-versa, with numerical values at specific angles (0, $\pi/6$, $\pi/4$, $\pi/3$, $\pi/2$) and their periodic extensions.
- c. Graph the six trigonometric functions and identify characteristics such as period, amplitude, phase shift, and asymptotes.
- d. Use trigonometric identities to evaluate numerical values, simplify expressions and solve equations. (E.g. use sum/difference identities to evaluate sin (π /12), simplify (sin(x) + cos(x))2).
- e. Apply multiple identities to simplify expressions and solve equations, including ones involving inverse functions.
- f. Solve trigonometric equations by factoring, by using identities, and by graphing.

7. Triangles

- a. Solve right triangle problems including applications.
- b. Solve right triangle problems involving angles of elevation and depression and angles using compass notation (e.g. 300 North) using trigonometric identities and rules.
- c. Use the Law of Cosines and Sines for all triangle types.
- d. Use vector concepts of magnitude and direction.

8. Circles

- a. Work with circles as a (Cartesian) conic section and in terms of its geometric and polar properties.
- b. Convert a quadratic equation into the equation of a circle or parabola using completion of squares.
- c. Identify the center and radius of a circle, and can write and use the equation of a circle from its properties.
- d. Calculate basic geometric properties like area of a sector, arc length, and the relation between the area of a sector and the inscribed triangle.
- e. Relate, through the unit circle, polar coordinates to Cartesian coordinates and vice versa